Minimization of the k-th eigenvalue of the Dirichlet Laplacian

نویسنده

  • Dorin Bucur
چکیده

For every k ∈ N we prove the existence of a quasi-open set minimizing the k-th eigenvalue of the Dirichlet Laplacian among all sets of prescribed Lebesgue measure. Moreover, we prove that every minimizer is bounded and has finite perimeter. The key point is the observation that such quasi-open sets are shape subsolutions for an energy minimizing free boundary problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalues of the Stokes Operator versus the Dirichlet Laplacian in the Plane

We show that the k-th eigenvalue of the Dirichlet Laplacian is strictly less than the k-th eigenvalue of the classical Stokes operator (equivalently, of the clamped buckling plate problem) for a bounded domain in the plane having a locally Lipschitz boundary. For a C boundary, we show that eigenvalues of the Stokes operator with Navier slip (friction) boundary conditions interpolate continuousl...

متن کامل

Domain Deformations and Eigenvalues of the Dirichlet Laplacian in a Riemannian Manifold

Abstract. For any bounded regular domain Ω of a real analytic Riemannian manifold M , we denote by λk(Ω) the k-th eigenvalue of the Dirichlet Laplacian of Ω. In this paper, we consider λk and as a functional upon the set of domains of fixed volume in M . We introduce and investigate a natural notion of critical domain for this functional. In particular, we obtain necessary and sufficient condit...

متن کامل

The Laplacian Polynomial and Kirchhoff Index of the k-th‎ Semi Total Point Graphs

The k-th semi total point graph of a graph G, , ‎is a graph‎ obtained from G by adding k vertices corresponding to each edge and‎ connecting them to the endpoints of edge considered‎. ‎In this paper‎, a formula for Laplacian polynomial of in terms of‎ characteristic and Laplacian polynomials of G is computed‎, ‎where is a connected regular graph‎.The Kirchhoff index of is also computed‎.

متن کامل

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

Spectral Optimization Problems with Internal Constraint

We consider spectral optimization problems with internal inclusion constraints, of the form min { λk(Ω) : D ⊂ Ω ⊂ R, |Ω| = m } , where the set D is fixed, possibly unbounded, and λk is the k th eigenvalue of the Dirichlet Laplacian on Ω. We analyze the existence of a solution and its qualitative properties, and rise some open questions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012